On Computing Deltas of RDF/S Knowledge Bases

Dimitris Zeginis, Yannis Tzitzikas and Vassilis Christophides

Institute of Computer Science (ICS)
Foundation for Research and Technology Hellas (FORTH), Crete, GREECE

Ontology Evolution

- Ontologies change over time because:
 - The real world is dynamic (or changes in the domain of interest)
 - Users’ perspective, needs or desires evolve (or changes in the conceptualizations)
 - Adaptations to the employed ontology language (or changes in specification)
 - Incomplete, faulty or inaccurate conceptualizations

- Two setting in which changes occur:
 - Controlled Evolution (e.g. Ontology Editors)
 - Open environments (i.e. the Semantic Web)
What is Change?

Real World + Ontologies and KBs = Ontology Evolution Algorithm

Capture Changes
Build Update Request

Add Class(...)
Populate Class(...)
Add Relationship(...)

What is Diff?

Real World + Ontologies and KBs = Comparison Algorithm (diff)

Add Class(...)
Populate Class(...)
Add Relationship(...)

...
RDF/S based Ontologies

K

\[
\begin{aligned}
&\text{Person} \\
&\text{Address [Literal]} \\
&\text{TA} \\
&\text{Student} \\
&\text{Jim}
\end{aligned}
\]

K'

RDF Knowledge Bases K, K'

\[
\begin{aligned}
&\text{Person} \\
&\text{Address [Literal]} \\
&\text{Student} \\
&\text{TA} \\
&\text{Jim}
\end{aligned}
\]

\[
\begin{aligned}
\{ & \text{(Person type Class),} \\
& \text{(Student type Class),} \\
& \text{(TA type Class),} \\
& \text{(Student subClassOf Person),} \\
& \text{(TA subClassOf Person),} \\
& \text{(Address type Property),} \\
& \text{(Address domain Student),} \\
& \text{(Address range Literal),} \\
& \text{(Jim type Student),} \\
& \text{(Jim type Person)}\}
\end{aligned}
\]

• K and K' are equivalent (K ~ K') if C(K)=C(K')

RDF KB Closures C(K), C(K')

Unique RDF/S KB Reductions

K

\[
\begin{aligned}
&\text{A} \\
&\text{B} \\
&\text{C}
\end{aligned}
\]

K_1

\[
\begin{aligned}
&\text{A} \\
&\text{B} \\
&\text{C}
\end{aligned}
\]

K_2

\[
\begin{aligned}
&\text{A} \\
&\text{B} \\
&\text{C}
\end{aligned}
\]

• K, K_1 and K_2 are equivalent
• K_1 and K_2 are redundancy free, but K_1 ≠ K_2.

• Reduction of a KB R(K) is smallest in size set of triples such that C(R(K))=C(K)

• K is redundancy free KB RF(K)) if it does not contain explicit triples which can be inferred from K
Distinctions of RDF/S Triple Sets

- **K** explicit triples
- **C(K)** inferred triples
- **K-R(K)** Redundant explicit triples
- **C(K)-R(K)** Redundant triples

Comparing RDF/S KBs

- Which operations can transform K to K'?
 - • The output of a comparison function is a set of primitive change operations of the form **Add(t)**, **Del(t)** where t is a triple of K and K'
 - • We call such a set **Delta** \(\Delta(K \rightarrow K')\)
 - • Deltas can be exploited for providing **Versioning** and **Synchronization** services

Therefore their **size** (i.e. number of change ops) is crucial to reduce the amount of data that have to be stored or exchanged over the network
Limits of Text-based Diffs

Why don’t we use CVS as we do for text?
• RDF/S KBs have not a unique syntax

```xml
<rdfs:Class rdf:ID="Class1"/>
</rdfs:Description>
```

• RDF/S KBs (i.e. graphs) have not a unique serialization

• RDF/S KBs imply inferred facts w.r.t. semantics of RDFS

```
K
  Student
    ↓
  Jim

K'
  Student
    ↓
  Jim
```

Outline

• Comparison functions
 – Size of Deltas
• Executing Deltas
 – Change Operation Semantics
 – Properties of RDF Deltas and Change Operation Semantics
• Synopsis of Results
• Related work
• Concluding remarks
Comparison Function $\Delta_e(K \rightarrow K')$

- **Delta Explicit (Δ_e):** takes into account only explicit triples

 \[\Delta_e(K \rightarrow K') = \{\text{Add}(t) \mid t \in K' - K\} \cup \{\text{Del}(t) \mid t \in K - K'\} \]

Comparison Function $\Delta_c(K \rightarrow K')$

- **Delta Closure (Δ_c):** takes also into account inferred triples

 \[\Delta_c(K \rightarrow K') = \{\text{Add}(t) \mid t \in C(K') - C(K)\} \cup \{\text{Del}(t) \mid t \in C(K) - C(K')\} \]
Comparison Function $\Delta_d(K \rightarrow K')$

- **Delta Dense (Δ_d):** return the explicit triples of one KB that does not exist at the closure of the other KB

 $\Delta_d(K \rightarrow K') = \{\text{Add}(t) \mid t \in K' - C(K)\} \cup \{\text{Del}(t) \mid t \in K - C(K')\}$

Comparison Function $\Delta_{dc}(K \rightarrow K')$

- **Delta Dense & Closure (Δ_{dc}):** resembles Δ_d regarding additions and Δ_c regarding deletions

 $\Delta_{dc}(K \rightarrow K') = \{\text{Add}(t) \mid t \in K' - C(K)\} \cup \{\text{Del}(t) \mid t \in C(K) - C(K')\}$
Comparison Functions: Example

\[\Delta_e(K \rightarrow K') = \{ \text{Del(TA subClassOf Person), Del(Address domain Student), } \]
\[\text{Del(Jim type Student), Add(TA subClassOf Student), } \]
\[\text{Add(Address domain Person), Add(Jim type Person) } \} \]

\[\Delta_c(K \rightarrow K') = \{ \text{Del(Jim type Student), Add(TA subClassOf Student), } \]
\[\text{Add(Address domain Person), Add(Address domain TA) } \} \]

\[\Delta_d(K \rightarrow K') = \{ \text{Del(Jim type Student), Add(TA subClassOf Student), } \]
\[\text{Add(Address domain Person) } \} \]

\[\Delta_{dc}(K \rightarrow K') = \{ \text{Del(Jim type Student), Add(TA subClassOf Student), } \]
\[\text{Add(Address domain Person) } \} \]

\[\Delta_e(K' \rightarrow K) = \{ \text{Del(TA subClassOf Student), Del(Address domain Student), } \]
\[\text{Del(Jim type Person), Add(TA subClassOf Person), } \]
\[\text{Add(Address domain Student), Add(Jim type Student) } \} \]

\[\Delta_c(K' \rightarrow K) = \{ \text{Del(TA subClassOf Student), Del(Address domain Person), } \]
\[\text{Add(Jim type Student) } \} \]

\[\Delta_d(K' \rightarrow K) = \{ \text{Del(TA subClassOf Student), Del(Address domain Person), } \]
\[\text{Add(Jim type Student) } \} \]

\[\Delta_{dc}(K' \rightarrow K) = \{ \text{Del(TA subClassOf Student), Del(Address domain Person), } \]
\[\text{Add(Jim type Student) } \} \]
Size of Deltas

Existing Approaches
- Δ_{closure}
- Δ_{explicit}
- $\Delta_{\text{dense \& closure}}$

Our Approach
- Δ_{dense}

On Executing Deltas

- *We need to execute the Change operations returned by the Delta functions in order to transform one KB to another*
 - $\Delta_x(K \rightarrow K') (K)$?
 - $\Delta_x(K' \rightarrow K) (K')$?
 where $x \in \{e, c, d, dc\}$
- A KB K satisfies a set of $\text{Add}(t)$ and $\text{Del}(t)$ operations Δ_x iff:
 - $\Delta_x = \{ \text{Add}(t) \}$ and $t \in C(K)$
 - $\Delta_x = \{ \text{Del}(t) \}$ and $t \notin C(K)$
 - K satisfies every element of Δ_x

- **Two Important Questions:**
 - *Does the resulting, KB $\Delta_x(K \rightarrow K') (K)$, satisfy the Delta $\Delta_x(K \rightarrow K)$ for every $x \in \{e, c, d, dc\}$?*
 - *Does the order of execution of change operations matters?*
Change Operation Semantics

- **What is the semantics of the Delta change operations?**
 - Adequate Pre and Post conditions of \(Add(t) \) and \(Del(t) \) operations

- Two alternative change operation semantics:
 - \(\mathcal{U}_p \) (\(p \) from plain): based on plain set theoretic semantics (additions and deletions of triples)
 - \(\mathcal{U}_r \) (\(ir \) from inference & reduction): incurs inference and redundancy elimination

\[
\Delta_e(K \rightarrow K') = \{ \text{Del(TA subClassOf Person), Del(Jim type Student), Add(TA subClassOf Student), Add(Jim type Person), Del(Address domain Student), Add(Address domain Person)} \}
\]

<table>
<thead>
<tr>
<th>Oper.</th>
<th>Precond.</th>
<th>Postcond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add(t)</td>
<td>(t \in K)</td>
<td>(K' = K)</td>
</tr>
<tr>
<td></td>
<td>(t \in C(K) - K)</td>
<td>(K' = K \cup {t})</td>
</tr>
<tr>
<td></td>
<td>(t \not\in C(K))</td>
<td>(K' = K \cup {t})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oper.</th>
<th>Precond.</th>
<th>Postcond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del(t)</td>
<td>(t \in K)</td>
<td>(K' = K - {t})</td>
</tr>
<tr>
<td></td>
<td>(t \in C(K) - K)</td>
<td>(K' = K)</td>
</tr>
<tr>
<td></td>
<td>(t \not\in C(K))</td>
<td>(K' = K)</td>
</tr>
</tbody>
</table>
\[
\mathcal{U}_T - \text{semantics}
\]

<table>
<thead>
<tr>
<th>Oper.</th>
<th>Precond.</th>
<th>Postcond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Add}(t)</td>
<td>\text{t} \in \text{K}</td>
<td>\text{K'} = \text{K}</td>
</tr>
<tr>
<td></td>
<td>\text{t} \in \text{C(K)} - \text{K}</td>
<td>\text{K'} = \text{K}</td>
</tr>
<tr>
<td></td>
<td>\text{t} \notin \text{C(K)}</td>
<td>\text{K'} = \text{R(K + {\text{t}})}</td>
</tr>
</tbody>
</table>

\[
\Delta_c(K \rightarrow K') = \{ \text{Del(Jim type Student)}, \text{Add(TA subClassOf Student)}, \text{Add(Address domain Person)} \}
\]

\[
\Delta_c(K' \rightarrow K) = \{ \text{Del(TA subClassOf Student)} \}
\]

The execution of Δ_c w.r.t. \mathcal{U}_P is not always correct.
Properties of \((\Delta_x, \cup_y)\) Pairs

- **Which combinations of Change op semantics and Delta functions satisfy the following properties?**
 - **Correctness:** A pair \((\Delta_x, \cup_y)\) is correct if for any \(K\) and \(K'\), the KB satisfying \(\Delta_x(K \rightarrow K')\) (or \(\Delta_x(K \rightarrow K')\)) under \(\cup_y\) semantics is equivalent to \(K'\) (or \(K\))
 - \(\Delta_x(K \rightarrow K')^{\cup_y} \equiv K'\)
 - \(\Delta_x(K' \rightarrow K)^{\cup_y} \equiv K\)
 where \(x \in \{e,c,d,dc\}\) and \(y \in \{p, ir\}\)
 - **Non Redundancy:** the execution of \(\Delta_x(K \rightarrow K')\) upon \(K\) assuming \(\cup_y\) semantics results to a redundancy free KB
 - **Semantic Identity:** Delta is empty when its operands KBs are equivalent
 - If \(K \equiv K'\) then \(\Delta_x(K \rightarrow K') = \emptyset\)

Correctness of \((\Delta_d, \cup_{ir})\)

\[
\Delta_d(K' \rightarrow K) = \{\text{Del}(TA \text{ subClassOf Student}), \text{Del}(\text{Address domain Person}) \}
\text{Add}(\text{Jim type Student})
\]

<table>
<thead>
<tr>
<th>Precond.</th>
<th>Postcond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t \in K')</td>
<td>(K = R(C(K') \setminus {t}))</td>
</tr>
<tr>
<td>(t \in C(K'))</td>
<td>(K = K')</td>
</tr>
<tr>
<td>(t \in C(K'))</td>
<td>(K = K')</td>
</tr>
</tbody>
</table>

The execution of \(\Delta_d\) w.r.t. \(\cup_{ir}\) is not always correct
Correctness of \(\Delta_{dc} \cup_{ir} \)

\[\Delta_{dc}(K' \rightarrow K) = \{\text{Del}(TA \text{ subClassOf Student}), \text{Del}(Address \text{ domain Person}), \text{Del}(Address \text{ domain TA}), \text{Add}(Jim \text{ type Student})\} \]

Precond.	Postcond.
\(t \in K'\) | \(K = R(C(K') - \{t\})\)
\(t \in C(K') \rightarrow K'\) | \(K = K'\)
\(t \not\in C(K')\) | \(K = K'\)

The execution of \(\Delta_{dc} \) w.r.t. \(\psi_{ir}\) is correct

Semantics Identity for \(\Delta_e\)

\[\Delta_e(K' \rightarrow K'') = \{\text{Add}(TA \text{ subClassOf Person})\} \]

Although \(K' \sim K''\) we have \(\Delta_e(K' \rightarrow K'') \neq \emptyset\)

- So \(\Delta_e\) does not satisfy semantic identity
 (although used by most existing systems)
- However \(\Delta_c, \Delta_d\) and \(\Delta_{dc}\) satisfy semantic identity
Order of Change Op Execution

\[\Delta_{dc}(K \rightarrow K') = \{ \text{Del(Student subClassOf Person)}, \text{Del(TA subClassOf Person)} \} \]

- Precond.: \(t \in K \)
- Postcond.: \(K' = R(C(K) - \{t\}) \)

- Precond.: \(t \in C(K) - K \)
- Postcond.: \(K' = K \)

- Precond.: \(t \in C(K) \)
- Postcond.: \(K' = K \)

Multi-pass Execution Mode

- To avoid nondeterminism and to ensure correctness, a multi-pass execution mode is needed for:
 - \(\Delta_c, \Delta_d, \Delta_{dc} \) under \(U_{ir} \) semantics
- The algorithm repeats a loop until every change operation is satisfied
 Execute \((K, \Delta_x)\) where \(x \in \{c,d,dc\}\)
 Repeat
 Pick an element \(\delta \in \Delta_x \) such that is not satisfied by \(K \)
 \(K = \delta^{U_{ir}}(K) \) i.e. apply on \(K \) the appropriate post-conditions of \(\delta \) w.r.t \(U_{ir} \)-semantics
 // Note that \(K \) may still not satisfy \(\delta \)
 Until \(\{\delta | \delta \in \Delta_x \text{ and not satisfied by } K\} = \text{Empty} \)

- We have proved that the loop always terminates
 - Finally all the operations of the delta will be satisfied
Synopsis of Results

<table>
<thead>
<tr>
<th>Pair</th>
<th>Correct</th>
<th>Exec Mode</th>
<th>Semantic ID</th>
<th>Non redund.</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\Delta_s, \psi_s))</td>
<td>Y</td>
<td>S</td>
<td>Y if (RF(K)) & (RF(K'))</td>
<td>Y if (RF(K'))</td>
</tr>
<tr>
<td>((\Delta_j, \psi_j))</td>
<td>Y if (K) compl.</td>
<td>S</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>((\Delta_i, \psi_i))</td>
<td>N</td>
<td>-</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>((\Delta_i, \psi_i))</td>
<td>N</td>
<td>-</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>((\Delta_i, \psi_i))</td>
<td>N</td>
<td>-</td>
<td>Y if (RF(K)) & (RF(K'))</td>
<td>Y</td>
</tr>
<tr>
<td>((\Delta_i, \psi_i))</td>
<td>Y in (\Psi^1)</td>
<td>M</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>((\Delta_i, \psi_i))</td>
<td>Y</td>
<td>M</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>((\Delta_i, \psi_i))</td>
<td>Y in (\Psi)</td>
<td>M</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

1 Knowledge Base with unique reduction

2 If (a) \(K \) is complete or (b) \(C(K) - K \subseteq C(K') \)

Comparison With Related Work

<table>
<thead>
<tr>
<th>System</th>
<th>Comparison Function</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWM (w3c)</td>
<td>(\Delta_s(K \rightarrow K'))</td>
<td>(\psi_r)</td>
</tr>
<tr>
<td>RDF-Utils</td>
<td>(\Delta_a(K \rightarrow K'))</td>
<td>(\psi_r)</td>
</tr>
<tr>
<td>SemVersion</td>
<td>(\Delta_a(K \rightarrow K'))</td>
<td>(\psi_r)</td>
</tr>
<tr>
<td></td>
<td>(\Delta_a(K \rightarrow K'))</td>
<td>(\psi_r)</td>
</tr>
<tr>
<td>PromptDiff</td>
<td>Heuristic matchers</td>
<td>-</td>
</tr>
<tr>
<td>Ontoview</td>
<td>Rules for changes</td>
<td>-</td>
</tr>
<tr>
<td>SWKM</td>
<td>(\Delta_d(K \rightarrow K'), \Delta_d(K \rightarrow K'))</td>
<td>(\psi_p, \psi_r)</td>
</tr>
<tr>
<td></td>
<td>(\Delta_d(K \rightarrow K'), \Delta_d(K \rightarrow K'))</td>
<td>(\psi_p, \psi_r)</td>
</tr>
</tbody>
</table>

Existing systems do not use \(\Delta_d, \Delta_{dc} \) and \(\psi_r \)
Delta Algorithms

- The implementation of the comparison functions is based in the main memory representation of RDF graphs.
- The algorithm compares these two graphs in the following order:
 - Classes
 - Properties
 - Resources
 - Containers
- For each of the above kinds of elements of the first graph it finds the corresponding (mapped) element of the second graph and compares it accordingly.

Complexity of Delta Algorithms

<table>
<thead>
<tr>
<th>$K_1 \rightarrow K_2$</th>
<th>(i) all stored</th>
<th>(ii) only K's stored</th>
<th>(iii) only K's stored and labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_e</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Δ_c</td>
<td>$O(L)$</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>Δ_d</td>
<td>$O(N)$</td>
<td>$O(N^2)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Δ_{dc}</td>
<td>$O(\max(N_2, L_1))$</td>
<td>$O(N^2)$</td>
<td>$O(\max(N_2, N_1^2))$</td>
</tr>
</tbody>
</table>

- Notations used:
 - $N_1 = |K_1|$, $N_2 = |K_2|$, $L_1 = |C(K_1)|$, $L_2 = |C(K_2)|$
 - $N = \max(N_1, N_2)$ and $L = \max(L_1, L_2)$
- Three different settings:
 (i) $K_1, K_2, C(K_1)$ and $C(K_2)$ are stored in a hashtable
 - Decision if t belongs to that set in $O(1)$
 (ii) Only K_1 and K_2 are stored
 - The cost to compute $C(K_1)$ from K_1 is in $O(L_1) = O(N_1^2)$
 (iii) Only K_1 and K_2 are stored and subsumption is labeled
 - checking whether t in $C(K)$ in is almost constant
Inference Strength and Delta Sizes

• The inference strength of a knowledge base \(K \) denoted by \(is(K) \) is defined as:
 \[is(K) = \frac{|C(K)| - |K|}{|K|} \]
 - If \(K = C(K) \) then \(is(K) = 0 \)
• The less this factor is, the less the execution times and delta sizes of the four comparison functions differ.
 - For \(\Delta_e \) all kinds of changes affect in the same way the delta size.
 - For \(\Delta_a \) additions or deletions that occur highly at the subsumption hierarchy affect more the delta size.
 - For \(\Delta_d \) all kinds of changes affect in the same way the delta size.
 - For \(\Delta_{dc} \) all additions have the same impact on the result. But deletions that occur highly at the subsumption hierarchy affect more the size of the produced delta.

Experiments Datasets

• Biological Data
 - Schema of the Gene ontology is very simple. It contains only one metaclass and all classes are instances of this metaclass.
 - Uses many blank nodes (~ 50%)
• Synthetic Data set
 - We created a sequence of four KBs: \(K_1, K_2, K_3, K_4 \) with
 • 100, 200, 300, and 400 classes respectively
 • 300, 600, 900, 1200 properties respectively
 - For each class, 10 instances were created,
 - For each property, 10 instances were created
 - All classes, property and their instances in \(K_i \) are also present in \(K_{i+1} \); their structuring may be different
 - The depth of the subclassOf hierarchy in each schema is 7.
Real Dataset: GO Ontology

- **is(K) is very small in this data set**

K_1	K_2	$	\Delta (K_1 \rightarrow K_2)	$ Size of $\Delta (K_1 \rightarrow K_2)$									
KBytes	Triples	KBytes	Triples	(T1) of $(\Delta (K_1 \rightarrow K_2))$	Δ_e	Δ_d	Δ_c	Δ_a					
197	2898	0.225	201	2964	0.228	0.329	0.296	0.312	92	107	92	92	
306	4496	0.225	331	4816	0.225	0.594	0.765	0.625	0.648	527	590	527	528
413	5994	0.218	418	6068	0.218	0.967	1.046	0.975	0.998	110	125	110	110
507	7340	0.206	512	7399	0.205	1.119	1.354	1.133	1.149	81	90	81	81
624	9020	0.196	638	9217	0.196	1.665	1.763	1.698	1.718	311	349	311	313
753	10800	0.182	757	12777	0.182	1.973	2.090	1.979	2.042	71	83	71	71
815	11680	0.179	822	11779	0.179	2.181	2.300	2.187	2.249	135	152	135	135

<table>
<thead>
<tr>
<th>Inference strength</th>
<th>Inference strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small variations in delta sizes</td>
<td></td>
</tr>
</tbody>
</table>

Synthetic Dataset: RDFS Schemas

- **is(K) is higher in this data set**

K_1	K_2	$	\Delta (K_1 \rightarrow K_2)	$ Size of $\Delta (K_1 \rightarrow K_2)$										
KBytes	Triples	KBytes	Triples	(T1) of $(\Delta (K_1 \rightarrow K_2))$	Δ_e	Δ_d	Δ_c	Δ_a						
408	5162	0.821	919	10267	0.789	0.806	0.570	0.552	0.594	0.718	13999	22837	13864	16362
919	10267	0.789	1232	13589	0.806	1.449	1.387	1.388	23185	36449	23063	27553		
1232	15389	0.806	1642	20460	0.826	2.217	1.623	1.702	32214	50415	32067	38941		
408	5162	0.821	1642	20460	0.826	1.077	1.624	1.109	1.097	24004	41951	23937	26433	

| • Δ_a is 63% bigger than Δ_e |
| • Δ_{dc} is 16% bigger that Δ_e |
| • satisfies semantic identify |
| • Δ_d is 1% smaller than Δ_e |

Notable variations in delta sizes (is(K) is higher for this data set)
Summary

- Four comparison functions were introduced and analyzed
 - Delta explicit (Δ_ϵ),
 - Delta closure (Δ_c),
 - Delta dense (Δ_d)
 - Delta dense & closure (Δ_{dc})

- Two change operation semantics were introduced and analyzed
 - One plain set theoretic \mathcal{U}_p
 - One that involves inference and redundancy elimination \mathcal{U}_{ir}

- We identified the always correct pairs: (Δ_ϵ, \mathcal{U}_p), (Δ_{dc}, \mathcal{U}_{ir})

- (Δ_{dc}, \mathcal{U}_{ir}) is most promising:
 - Returns empty result if K, K' are semantically equivalent
 - Resulting KB is redundancy free when applying $\Delta_{dc}(K \rightarrow K')$ on K
 - Gives the smallest result if K' is an extension of K

Thanks for your attention!

Any questions?
Correctness of $\Delta_{d_r} \cup_{ir}$

$\Delta_{d}(K \rightarrow K') = \{ \text{Del(Student subClassOf Person)} \}$

Precond. $t \in K$
Postcond. $K' = R(C(K) - \{t\})$

$t \in C(K) \rightarrow K' = K$

The execution of Δ_{d} w.r.t. \cup_{ir} is not always correct

Correctness of $\Delta_{dc} \cup_{ir}$

$\Delta_{d}(K' \rightarrow K) = \{ \text{Del(Student subClassOf Person), Del(TA subClassOf Person)} \}$

Precond. $t \in K$
Postcond. $K' = R(C(K) - \{t\})$

$t \in C(K) \rightarrow K' = K$

The execution of Δ_{dc} w.r.t. \cup_{ir} is correct
Note on Closures

• $\forall K, K' \subseteq K \Rightarrow C(K') \subseteq C(K)$ and $K \subseteq C(K)$ (monotonicity)
 - $K \text{Del} \subseteq K$, $K-K\text{Del} \subseteq K$, $C(K\text{Del}) \subseteq C(K)$, $K\text{Del} \subseteq C(K\text{Del})$, $K\text{Del} \subseteq C(K)$
 - $K \text{Del} \subseteq C(K) - C(K\text{Del})$
 - $C(K) - C(K\text{Del}) \subseteq C(K) - K\text{Del}$
 - $C(K - K\text{Del}) \subseteq C(K) - K\text{Del}$
 - $C(K - K\text{Del}) \subseteq C(K) - C(K\text{Del})$
 - $K - K\text{Del} \subseteq C(K - K\text{Del}) \subseteq C(K) - C(K\text{Del}) \subseteq C(K)$

Comparison Functions: Example

RDFS Standard

$\Delta_a(K \rightarrow K') = \{ \text{Del}(\text{TA subClassOf Person}), \text{Del}(\text{Address domain Student}), \text{Del}(\text{Jim type Student}), \text{Add}(\text{TA subClassOf Student}), \text{Add}(\text{Address domain Person}), \text{Add}(\text{Jim type Person}) \}$

$\Delta_c(K \rightarrow K') = \{ \text{Del}(\text{Jim type Student}), \text{Del}(\text{Address domain Student}), \text{Add}(\text{TA subClassOf Student}), \text{Add}(\text{Address domain Person}) \}$

$\Delta_d(K \rightarrow K') = \{ \text{Del}(\text{Jim type Student}), \text{Del}(\text{Address domain Student}), \text{Add}(\text{TA subClassOf Student}), \text{Add}(\text{Address domain Person}) \}$

$\Delta_{dc}(K \rightarrow K') = \{ \text{Del}(\text{Jim type Student}), \text{Del}(\text{Address domain Student}), \text{Add}(\text{TA subClassOf Student}), \text{Add}(\text{Address domain Person}) \}$
Comparison Functions: Example

RDFS Standard

$\Delta_e(K' \rightarrow K) = \{\text{Del}(\text{TA subClassOf Student}), \text{Del}(\text{Address domain Person}), \text{Del}(\text{Jim type Person}) \text{ Add}(\text{TA subClassOf Person}), \text{Add}(\text{Address domain Student}), \text{Add}(\text{Jim type Student})\}$

Size=6

$\Delta_c(K' \rightarrow K) = \{\text{Del}(\text{TA subClassOf Student}), \text{Del}(\text{Address domain Person}), \text{Add}(\text{Address domain Student}), \text{Add}(\text{Jim type Student})\}$

Size=4

$\Delta_d(K' \rightarrow K) = \{\text{Del}(\text{TA subClassOf Student}), \text{Del}(\text{Address domain Person}), \text{Add}(\text{Address domain Student}), \text{Add}(\text{Jim type Student})\}$

Size=4

$\Delta_{dc}(K' \rightarrow K) = \{\text{Del}(\text{TA subClassOf Student}), \text{Del}(\text{Address domain Person}), \text{Add}(\text{Address domain Student}), \text{Add}(\text{Jim type Student})\}$

Size=4